If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2-8b+2=0
a = 1; b = -8; c = +2;
Δ = b2-4ac
Δ = -82-4·1·2
Δ = 56
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{56}=\sqrt{4*14}=\sqrt{4}*\sqrt{14}=2\sqrt{14}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{14}}{2*1}=\frac{8-2\sqrt{14}}{2} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{14}}{2*1}=\frac{8+2\sqrt{14}}{2} $
| 3(12n-8)-5(1+n)=n-6+12n-5 | | X2+10x+21=0 | | 7y+-6=3y+2 | | -4=15y+2(-3y+14) | | -9w=-63 | | 6936.26=3.14r | | 8(16x^2-9)=5(4x-3) | | 3(x+7)+2x=4x+7 | | -3/5x+7=1/5x=8 | | (7x/4)-(1/7)=1-(2/7)(x-1/14) | | (-1/2p+1)=(-11/10+1/4p) | | |x-3|=21 | | Y=(5/7x+79/40)40 | | -2x3+x2-1x=-2 | | 4/7t+1/4=3/14t+3/2 | | (Y=5/7x+79/40)40 | | 36=9/5x | | 8n+4=7n+4n-8 | | 11.4=3.2+x | | 4y-6=10y+36 | | 5(x-1)=4x+2 | | x=x+8/4 | | 10x+35/5=x | | 7z-18=z+6 | | (-90)=-45a | | 2m-1=m-8 | | 1.3x−1.3x-0.7(x-6)=0.6(x-7) | | -2(2x-4)+1=1 | | -5(5x-9)+2=-25x+47 | | 2x+(3/4)(4x+16)=7 | | 2x+15=3x-11 | | 2s+19=13 |